R&D consortium creates innovative component manufacturing solution
Manufacturing a huge range of components could become significantly more cost-effective and quick, thanks to an innovative new project underway in Scotland.
Spirit AeroSystems is working with the University of Strathclyde, supported by CENSIS, to create a new, more cost-effective method of producing composite parts and replacing traditional autoclave curing processes by way of an intelligent, tailored heating tool.
Parts usually require curing in an autoclave for standard periods of time, at set temperatures, regardless of how they respond to the process. The consortium in Scotland aims to improve on this by creating a tool that removes the need for an autoclave, which typically represents around USD$4m in upfront capital expenditure. It also enables users to monitor and match a cure cycle to a component’s geometric characteristics and see how it is reacting to the process.
Not only has the initiative created a unique curing process, it has developed an entirely new capability in the UK for a number of supply chains. Depending on a component’s geometry, the project could reduce operating costs by as much as 50%, through reduced capex, factory space and energy consumption, while cutting cycle times by up to 40%.
- RELATED STORIES:
- Businesses are investing in innovation but not becoming innovative, says Capgemini
- The diesel dilemma: Tackling climate change by doing more with existing technology
- 300 manufacturing jobs coming to Huntsville as construction nears at BOCAR plant
Stevie Brown, Lead Engineer at Spirit’s Advanced Technology Centre in Prestwick, explained:
“Instead of curing components at a standard temperature for hours at a time, we can now tailor the cycle time to match individual part geometries. The autoclave has been a bottleneck in manufacturing lines, and removing it will reduce cycle times for components, cut production costs and decrease energy consumption.”
Christos Tachtatzis, Lecturer – Principal Investigator from the University of Strathclyde’s Department of Electronic and Electrical Engineering, commented:
“This initiative is about bringing engineering solutions to industrial challenges: tracking of the progression of the curing process during the manufacture of high-value components is a big gap in manufacturers’ knowledge.
“The consortium has developed a multi-zone heated tool with advanced control of the curing for individual parts, allowing for geometry-driven cure cycles and better decision making. The optimisation of the composite curing process has been a long-term goal for a range of industries and this solution has the potential to revolutionise the sector.
“The knowledge exchange between both organisations has been key to the success of the development. The project will continue for another year at least, giving us the opportunity to mature the technology further towards the productisation phase. The new approach to curing has huge potential in any industries that rely on composite materials.”
Craig Fleming, Business Development manager at CENSIS, added:
“This project has the ability to change the way a range of high-value components are manufactured – it’s a ground-breaking initiative. The collaboration between Spirit AeroSystems and the University of Strathclyde demonstrates what can be achieved when Scotland’s world-class academic institutions and industrial base work together.
“Not only is it a first for the UK, but the academic know-how provided by the University of Strathclyde is allowing Spirit’s Prestwick facility to lead the way globally; helping its operations in the US and beyond look at this new approach to component fabrication. It’s encouraging to see a Scottish manufacturing and assembly site set a new benchmark in global manufacturing capabilities.”