Sustainability goals in manufacturing need a boost with AI

Moving sustainability goals from the boardroom to the control room will need the power of AI to truly reduce emissions, says Jane Ren, founder of Atomiton

Jane Ren, CEO, and founder of computer software company Atomiton explains how artificial intelligence can help achieve sustainability goals, by providing visibility into the carbon effect of production activities


The drive is on across the world to reduce our carbon emissions and move toward a net zero future to mitigate against the effects of climate change. In the relentless pursuit of establishing their green credentials, companies are setting ambitious decarbonisation commitments in the boardroom without the ability to translate these goals into action on the shopfloor. 

Many companies are focusing on target setting with the challenge that these targets are often not supported by operational pathways to achieving these goals. The Energy and Climate Intelligence Unit (ECIU) reports that at least one fifth of the world’s largest public companies have committed to meet net zero targets.  In the last few years, thousands of Chief Sustainability Officers have been appointed to help drive these targets. These companies need to quickly understand the carbon levers in their operations, because they have already made public commitments and need to avoid being perceived as “greenwashing”. Setting the next level of concrete metrics that can align and mobilise managers and frontline employees are essential to making measurable progresses. Investors and customers of these companies will increasingly expect to see carbon performance communicated in terms of measurable improvements.

One such example is the BMW Group who have committed to reduce carbon emissions from its productions by 80% from 2019 levels by 2030. To translate this target into executable plans they must understand three key insights:

  • Carbon attribution
  • Operational carbon levers 
  • Carbon intensity variance

Firstly, their carbon attribution, namely which production activities drive the most carbon emissions? In attempting to quantify their carbon emissions and gauge how much they can reduce them, companies usually take an outside in or top-down approach of allocation – distributing the total amount across different operational units. The problem with allocation is it’s artificial and doesn’t connect well to actionable levers.  In the work we have been doing to help companies understand energy intensity and optimisation, we take an inside out approach, because we link emissions to the actual machine and operational activities, which we call attribution. 

With this information you must decide, which operational levers have the greatest impact on carbon intensity. For example, the paint process may be responsible for the most carbon emissions, but is not a significant lever to change. It is important to understand what the levers are that will make a change, and such information is often not transparent at the boardroom level because top-down reporting is not connected with actual production activities.

Finally does the carbon performance (carbon emission to produce each unit of product) vary from day to day and why? Does it vary from product line to product line and why? Does it vary from site to site and why? Variances often point to concrete opportunities of improvement, and on the other hand, may lead to strategic considerations for adopting new product and operational strategies to reduce total emissions.  

Most companies do not have enough data transparency about their productions to answer these questions. However, these are perquisites to their ability to meet the targets set. Currently there is a great divide across the board room and the “control room”. Company boards focus on setting targets, while the factories carry our piecemeal initiatives to improve energy efficiency at incremental paces. It’s time to bridge the divide.  


Looking for sustainable answers in AI data

Sustainable operations must be data-driven, and industrial AI-based predictive analytics can pave the way. At Atomiton we have successfully deployed our solution across several carbon intensive sectors in the past few years. It delivers inline predictive analytics that run-in sync with a plant’s processes to solve these uncertainties and it can even bring light to which operational conditions can be maintained without change, and which specific levers can make the most impact. 

The heart of the solution is the Atomiton Stack (A-Stack), an analytics engine that can sift through large amounts of production data and identify operational patterns. It allows users to easily connect and feed their machine data into analytics models designed to recognise energy consumption trends and discover sustainability levers. The stack is comprised of three layers: 

  • Data contextualization
  • Energy modelling
  • Sustainability analytics

The stack can ingest data from various sources with different protocols, including sensors, operational systems, historians and enterprise applications such as ERP.

Today for each operational decision made, front line operators understand its implications on safety and quality, but they don’t understand its implications for emissions and sustainability.   

A-Stack presents the actionable insights directly linked to companies’ sustainability targets. This helps the operators to see the boardroom net zero targets translating into their day-to-day operational activities. For example, firing up a backup gas boiler or electric boiler may be equally good options for a particular upsurge of processing load, but the lower carbon emissions from the electrical boiler, especially if it is powered by “green electricity”, may be a much more sustainable decision. 


Categorising carbon emissions in manufacturing

Greenhouse gas emissions are categorised into three groups or scopes by the most widely-used international carbon accounting tool, the Greenhouse Gas (GHG) Protocol: 

  • Scope 1 covers direct emissions from owned or controlled sources
  • Scope 2 covers indirect emissions from the generation of purchased electricity, steam, heating, and cooling consumed by the reporting company
  • Scope 3 includes all other indirect emissions that occur in a company’s value chain


Some companies focus on scope three, which is very hard to control and track, as it requires an understanding of suppliers or customers carbon footprints. But what companies can control is their own operations. For manufacturers, most of that comes from their production systems. For example, 90% of the BMW Group’s Scope 1 and 2 emissions comes from its production facilities. This is an area of emission sources that we are actively measuring, visualising, and optimising with our software. We see that increasingly, as upstream companies start to demand transparency on Scope 3, their suppliers must equip themselves with the ability to measure and improve on their Scope 1 and 2 emissions because these translate into Scope 3 emissions for the upstream customers.


Manufacturers must use AI to reduce carbon emissions

Before Vopak started working with Atomiton, it knew its Savannah facility was one of the company's high energy consumption sites. The majority of the energy used was purchased electricity, which generates Scope 2 emissions. Although there was a corporate mandate to reduce greenhouse gas emissions there was no direct translation into how the terminal staff should operate the plant to achieve this ambition. Vopak provides a range of complex services to its customers with a myriad of different equipment running at the terminal, conducting thousands of mixing, loading, and heating activities each week. Any concept of reducing carbon becomes abstract when the operators do not know the exact action levers. 

Through our work with them the software uses AI models to perform electricity attribution and identify variances and operational levers. It turned out that 80% of the controllable variance of electricity consumption came from one kind of heating activity. This immediately turned into an emissions lever – the hours of heating performed but not required. 

However, this lever is not actionable until the analytics inform heating is required for which tank and which pipe segments, based on anticipated operational schedules, conditions, and expected lead time. With the detailed real-time insights from A-Stack, the team can effectively execute the change, and significantly reduced Scope 2 emissions by 40%. 

For boardroom goals to translate into improved carbon performance on the shopfloor, operators must have the tools to understand - what does it mean for their day-to-day roles? Do they need to change how they work? Do they need different initiatives? We call that ‘ultra-transparency’, and there is a lack of transparency in this respect, at present. I would emphasise we cannot solve all the problems, but for manufacturers, we solve a major part of the dilemma by adding intelligence and visibility to the production and machine data that allow them to fully comprehend the carbon implications of their production decisions.



Featured Articles

What to see and do at GSMA MWC Shanghai 2024

At the 2024 GSMA MWC in Shanghai, guests will learn more about the future of 5G and IoT, as well as the role of mobile connectivity in manufacturing

EV Recycling Driven By Tata Steel, Nucor and Dowa Holdings

Market projected growth for EV recycling set to go from US$551bn in 2024 to US$768bn by 2029 with Tata Steel and Nucor embracing ferrous metal recycling

Brooke Weddle: Manufacturing Needs A Rebrand

Brooke Weddle, senior partner at Mckinsey, sat down with Manufacturing Digital to discuss methods to address manufacturing's global hiring crisis

Immensa and Intaj Suhar partner to boost Omani manufacturing

Procurement & Supply Chain

Bain & Company Report: OEMs and Digital Transformation

Smart Manufacturing

The Factory of the Future: Manufacturers' Biggest Challenges

Smart Manufacturing